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The turbulent channel flow with streamwise rotation has been investigated by means of
several different analytical, numerical, and modelling approaches. Lie group analysis
of the two-point correlation equations led to linear scaling laws for the streamwise
mean velocity. In addition it was found that a cross-flow in the spanwise direction
is induced, which may also exhibit a linear region. By further analysis of the two-
point correlation equation, it is shown that all six components of the Reynolds stress
tensor are non-zero. In addition certain symmetries and skew-symmetries about the
centreline have been established for all flow quantities. All these findings of the
analysis have been verified very well by means of direct numerical simulations (DNS).
The flow has also been calculated with large-eddy simulations (LES) and second-
moment closure models. The dynamic LES captured most of the theoretical and DNS
findings quantitatively. Except for one stress component the second-moment closure
model was able to capture most of the basic trends, but no quantitative agreement
could be achieved.

1. Introduction
During the development of the symmetry approach in Oberlack (2001), it was

noticed that there may be one additional turbulent scaling law which was not
mentioned since no experimental or direct numerical simulation (DNS) data were
available. This concerns the turbulent channel flow rotating about the streamwise
direction. A sketch of the flow geometry is given in figure 1.

The flow appears to have several common features with the classical rotating
channel flow (Johnston, Halleen & Lazius 1972) but also has some very distinct
characteristics. The classical case considers the rotation of a turbulent channel flow
about the spanwise direction (x3). In this flow the mean streamlines follow plane
spirals. In contrast to this, mean streamlines of the present flow exhibit corkscrew-
like spirals. However, the most obvious difference between the two cases may be
the induction of a mean velocity in the x3-direction. This cross-flow can be deduced
by investigating the mean momentum equation and the Reynolds stress transport
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Figure 1. Sketch of the flow geometry of a turbulent channel flow with streamwise rotation.

equation. It is interesting to note that the induced cross-flow is a property of the
turbulent flow and may not be deduced from the equations for laminar flows.

Similarly to the classical case, it will be shown that the only self-similar mean
velocity profiles are linear functions,

ū1 = A1Ω1x2 + B1 and ū3 = A2Ω1x2 + B2, (1.1)

to be derived in the subsequent sections. In both the present and the classical case,
the mean velocities scale on the rotation rate.

Nevertheless, it is anticipated that the general appearance of the mean velocity
profile in the x1-direction is very different from the classical case. Since the reflection
symmetry about the centreline is not broken, the mean velocity may stay symmetrical.
In Oberlack (2001) it was observed that, except for the log-law, the highest degree of
symmetry is usually obtained in flow regions with the weakest wall influence. Hence,
it is expected that two linear regions may emerge near the centre region.

The paper is organized as follows. In the next section three different analyses are
presented. The one which initiated the project is Lie group analysis of the present flow,
which suggested the linear velocity profiles. Besides that analysis, global time scales of
the flow will be investigated which indicate the location of the linear regions. In the
final analysis, the symmetry of flow quantities about the centreline of the channel will
be examined. In § 3, a DNS of the rotating channel flow is presented. Mean velocities
and statistical quantities for different rotation rates will be established. Finally, the
present test case is calculated with turbulence models. Results from second-moment
closure models and large-eddy simulations (LES) are shown.

2. Analysis
The basis for the analysis of the present flow geometry in § § 2.2 and 2.3 is the mean

momentum equation and the two-point velocity correlation equation in a rotating
frame of reference. Assuming the mean velocity parallel to the walls as shown in
figure 1 and all stresses only depending on x2 we obtain

0 = − 1

ρ

∂p̄

∂x1

− ∂u1u2

∂x2

+ ν
∂2ū1

∂x2
2

, (2.1a)

0 = − 1

ρ
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∂x2
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2
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and

0 = −R2j δi1

dū1(x2)

dx2
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]
+ ν

[
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∂x2∂x2
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∂2Rij

∂x2∂r2

+ 2
∂2Rij

∂rk∂rk

]
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∂x2
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∂
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[
R(ik)j − Ri(jk)

]
− 2 Ω1[e1liRlj + e1ljRil] (2.2)

(see e.g. Rotta 1972; Hinze 1987); ūi , p̄, uiuj , ν, Ω1, and eijk are respectively the
mean velocity, the mean pressure, the Reynolds stress tensor, the dynamic viscosity,
the rotation rate in the x1-direction, and the alternation tensor. The five two-point
correlation tensor functions which appear in equation (2.2) are defined as

Rij (x, r; t) = ui(x, t) uj

(
x(1), t

)
, (2.3a)

puj (x, r; t) = p(x, t) uj

(
x(1), t

)
, ujp(x, r; t) = uj (x, t) p

(
x(1), t

)
, (2.3b)

and

R(ik)j (x, r; t) = ui(x, t) uk(x, t) uj

(
x(1), t

)
,

Ri(jk)(x, r; t) = ui(x, t) uj

(
x(1), t

)
uk

(
x(1), t

)
,

}
(2.3c)

where ui and p correspond to the fluctuating quantities. The tensors (2.3a)–(2.3c)
are functions of the physical and the correlation space coordinates x and r =
x(1) − x respectively. For the present case all statistical quantities depend only on the
wall-normal coordinate x2 and the correlation coordinate r . The double two-point
correlation tensor Rij , hereafter simply referred to as two-point correlation, converges
to the Reynolds stress tensor uiuj in the limit of zero separation |r |:

uiuj (x) = lim
r→0

Rij (x, r). (2.4)

It should be noted that the two-point correlation equation only contains the triple
correlations as unknown terms. For both two-point velocity–pressure correlations, uip

and puj a Poisson equation may be derived (see e.g. Oberlack 1994, 1995). In addition,
all dependent variables in equation (2.2) must satisfy the continuity conditions

∂Rij

∂xi

− ∂Rij

∂ri

= 0,
∂Rij

∂rj

= 0,
∂puj

∂rj

= 0,
∂uip

∂xi

− ∂uip

∂ri

= 0. (2.5)

To help in understanding the self-similarity of the two-point correlation equation
given below, two identities may give some interesting insight in the structure of
the two-point correlation function. They can easily be derived from a geometrical
consideration by interchanging the two points x and x(1) = x + r:

Rij (x, r) = Rji(x + r, −r), uip(x, r) = pui(x + r, −r). (2.6)

The former is particularly interesting for the trace elements of Rij since it defines a
functional equation in real- and correlation-space. There also exists a similar identity
to (2.6) for the triple correlation, which will not be utilized here.

Some fundamental properties of the flow can already be seen from the equ-
ations (2.1a)–(2.1c). For high-Reynolds-number flows, viscous transport terms are
only significant in the near-wall region. In regions sufficiently far from solid walls,
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the viscous terms may be neglected to leading order, and the balance is dominated
by the pressure and the turbulent stresses.

From equation (2.1a) the usual linear turbulent shear stress profile for u1u2 may
be derived because the pressure gradient in the streamwise (x1) direction is constant.
Since no pressure gradient is present in the spanwise (x3) direction, it can be deduced
from equation (2.1c) that the shear stress u2u3 is uniform. Equation (2.1b) only
determines the pressure gradient in the wall-normal direction. Though it is the only
mean momentum equation containing the Coriolis force, it has no influence on the
mean velocity. It will be seen later that the mean velocity is determined only by the
turbulent stresses. This is similar to the usual non-rotating channel flow in which no
information on the mean flow can be determined from the mean momentum equation.

At this point it will be anticipated that besides the shear stress u2u3 the additional
shear stress u1u3 is induced due to the rotation. This can be taken from equation (2.2)
in which a Coriolis term appears in the R13-equation. From the structure of the
‘13’ equation, it appears that the Coriolis term may not be balanced solely by the
pressure–velocity correlation and by the triple correlation. One may naturally expect
that the term [ūk(x2 + r2) − ūk(x2)] ∂R13/∂rk may also contribute to the balance in
the equation. Hence u1u3 may be non-zero though this stress has no counterpart in
the mean velocities in an eddy-viscosity sense.

2.1. Time-scale analysis

In the present subsection the characteristic time scales of the viscous sublayer and
the universal logarithmic region will be compared with the characteristic time scale
of the rotation rate. The latter is defined as

tΩ ≡ 1

Ω
(2.7)

where Ω is the rotation rate about the x1-direction, also denoted by Ω1.
The characteristic time scale of the viscous sublayer and the universal logarithmic

region are

tν ≡ ν

u2
τ

and tlog ≡ x2

uτ

(2.8)

respectively where uτ is the ‘friction velocity’ defined as uτ =
√

ν(∂ū1/∂x2)|wall. For
sufficiently high Reynolds number, tν is a fixed small quantity while tlog increases with
the distance from the wall. Comparing the ratio of these flow time scales with the
rotation time scale we respectively obtain

T1 =
tν

tΩ
=

νΩ

u2
τ

=
Ro

2Reτ

, (2.9)

T2 =
tlog

tΩ
=

x2Ω

uτ

= Ro
x2

h
, (2.10)

where Reτ = huτ/2ν, Ro = Ωh/uτ and h is the channel width.
For zero rotation rate both quantities are exactly zero. However, assuming Ro of

O(1) and supposing Re to be a large parameter, the time-scale ratio T1 is a small
quantity. Hence it is concluded that rotation only perturbs the viscous sublayer, and
a significant change may not be observed.

Considering the same order of magnitude assumptions for Ro as above, it can be
concluded that T2 may only be a small parameter for small y/h. This is the flow
region close to the wall and next to the viscous sublayer. In contrast, if y/h is of O(1),
T2 may become an O(1) parameter. Consequently, we conclude that this is the flow
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region which is affected most by the system rotation. In this region system rotation is
a leading-order effect. In addition we conclude that the region which is affected most
by the rotation extends further to the wall with increasing rotation rate. The mean
velocity of a turbulent channel flow is only weakly affected by the system rotation
in the near-wall region. However, system rotation has a substantial effect on regions
sufficiently far from the wall such as the logarithmic region up to the centreline.

In fact this global effect has been observed both in experiments and in DNS for
the classical rotating channel flow with x3 as the rotation axis (see e.g. Johnston et al.
1972; Kristoffersen & Andersson 1993). In contrast to the present case the classical
rotating channel case does not reveal a symmetric mean velocity profile about the
centreline. Instead a skewed mean velocity profile in the centre part of the channel
is observed, which will be proven in the next subsection. This is not the case for the
present flow, in which u1 stays symmetric about the centreline.

2.2. Reflection symmetry of statistical flow quantities about the centreline

Reflection symmetries can be obtained by finding transformations of the form
φ̃ = −φ where φ may represent any dependent and independent variable. The
following is observed in a variety of different channel types of flow such as the usual
turbulent Poiseuille and the turbulent Couette flow. If the corresponding equations
and boundary conditions admit a certain reflection symmetry about the centreline,
this is also verified for all statistical quantities.

For the present problem the system (2.2) and (2.5) admits the reflection symmetry
where the variables are respectively separated as independent variables, mean
quantities, and statistical quantities:

x̃1 = x1, x̃2 = −x2, x̃3 = −x3, r̃1 = r1, r̃2 = −r2, r̃3 = −r3, (2.11a)

˜̄u1 = ū1, ˜̄u3 = −ū3, ˜̄p = p̄, (2.11b)⎛⎝R̃11 R̃12 R̃13

R̃21 R̃22 R̃23

R̃31 R̃32 R̃33

⎞⎠ =

⎛⎝ R11 −R12 −R13

−R21 R22 R23

−R31 R32 R33

⎞⎠ , (2.11c)

⎛⎝p̃u1

p̃u2

p̃u3

⎞⎠ =

⎛⎝ pu1

−pu2

−pu3

⎞⎠ ,

⎛⎝ũ1p

ũ2p

ũ3p

⎞⎠ =

⎛⎝ u1p

−u2p

−u3p

⎞⎠ . (2.11d)

These reflection symmetries can be generalized such that any other statistical one-,
two-, and multi-point quantity can be determined from the fluctuation quantities
according to the transformation for the fluctuations

ũ1 = u1, ũ2 = −u2, ũ3 = −u3, p̃ = p. (2.12)

For example, the transformation of the two-point triple correlations R(ik)j and Ri(jk)

which are not stated above can be determined in a similar manner.
From (2.11b) it can be determined that ū1 is symmetric about the centreline and ū3

is antisymmetric about the centreline.
The transformation of the Reynolds stress tensor can also be obtained by employing

equation (2.4) in the transformation (2.11c). The consequences for the stresses are such
that all normal stresses and the off-diagonal component u2u3 are symmetric about
the centreline. In contrast u1u2 and u1u3 are antisymmetric about the centreline. It
should be noted that the results for u1u2 and u2u3 can also be obtained from the mean
momentum equations (2.1a) and (2.1c). The reflection properties of other one-point



388 M. Oberlack, W. Cabot, B. A. Pettersson Reif and T. Weller

quantities such as the pressure–strain correlation and the dissipation tensor can also
be determined by equation (2.12).

2.3. Lie group analysis of the two-point correlation equation

For simplicity it will be assumed in the following analysis that the Reynolds number
tends to infinity so that the viscous terms in the two-point correlation equation (2.2)
may be neglected. The basis for this assumption is the fact that, to leading order
only, viscosity has no effect as Re → ∞. Viscosity only affects the small scales of O(η)
where η is the Kolmogorov length scale. Hence neglecting viscosity is only valid for
|r| > η. If |r | < η, the last term of the third line in equation (2.2) corresponds to
the dissipation and cannot be neglected. A rigorous asymptotic analysis of the two
regions |r | > η and |r | < η, i.e. the derivation of a small- and a large-scale equations,
may be taken from Oberlack (2002) or Oberlack & Guenther (2003).

The general purpose of Lie group analysis, also called symmetry analysis, is two-fold.
First, the symmetry transformations are determined, which give profound knowledge
of the flow physics. Second, the symmetries may be used to achieve self-similarity
or reduction of the two-point correlation equation. The first step to accomplish this
objective is to find symmetry transformations which do not change the form of the
equation under investigation. In fact, this is analogous to the analysis presented in
the previous subsection where reflection symmetries have been investigated which do
not alter the equations. However, the main difference in the present subsection is
that the transformations considered therein are finite groups. In order to obtain a
reduction, continuous groups of transformations need to be considered. The method
to find the desired continuous groups of transformations is called Lie group analysis.
A good introduction to this method is given in Bluman & Kumei (1989) and Stephani
(1989). In the present subsection only a heuristic approach will be presented while
some more mathematical details on group methods are presented in Appendix B in
Oberlack (2001).

Self-similarity or reduction is always associated with the decrease of the number
of independent variables. It is important to note that the independent variables are
not necessarily restricted to the usual variables such as space and time. Instead any
parameter in the equation under investigation may be considered as an independent
variable as long as it does not implicitly depend on any other independent parameter
in the problem.

Hence, in the first step a reduction will be achieved by rewriting the two-point
correlation equation such that Ω1 ≡ Ω is absorbed into all the remaining independent
and dependent variables. The most general form of transformation allowing this
reduction is

xi = x̃iγ (Ω), ri = r̃iγ (Ω), ūi = ˜̄uiγ (Ω)Ω, (2.13a)

Rij = R̃ij γ (Ω)2Ω2, pui = p̃uiγ (Ω)3Ω3, uip = ũipγ (Ω)3Ω3, (2.13b)

R(ik)j = R̃(ik)j γ (Ω)3Ω3, Ri(jk) = R̃i(jk)γ (Ω)3Ω3, (2.13c)

where the new variables are denoted by tilde, and γ (Ω) is an arbitrary function of Ω .
After employing (2.13a)–(2.13c) and imposing the high-Reynolds-number limit, the
two-point correlation equations are

0 = − R̃2j δi1

d˜̄u1(x̃2)

dx̃2

− R̃2j δi3

d˜̄u3(x̃2)

dx̃2

− R̃i2δj1

d˜̄u1(x̃2 + r2)

d(x̃2 + r̃2)
− R̃i2δj3

d˜̄u3(x̃2 + r2)

d(x̃2 + r̃2)

−[˜̄u1(x̃2 + r̃2) − ˜̄u1(x̃2)]
∂R̃ij

∂r̃1

− [˜̄u3(x̃2 + r̃2) − ˜̄u3(x̃2)]
∂R̃ij

∂r̃3
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− 1

ρ

[
δi2

∂p̃uj

∂x̃2

− ∂p̃uj

∂r̃i

+
∂ũip

∂r̃j

]

− ∂R̃(i2)j

∂x̃2

+
∂

∂r̃k

[
R̃(ik)j − R̃i(jk)

]
− 2[e1li R̃lj + e1lj R̃il]. (2.14)

Note that this is essentially the form of equation (2.2) with ν = 0. Obviously the set
of independent variables x2, ri , and Ω has been reduced by one. From group theory
it follows (see Oberlack 2001, Appendix B) that equation (2.14) admits a further
similarity reduction only for certain mean velocities which obey the equations

[a1(x̃2 + r̃2) + a3 + a5]
d˜̄u1(x̃2 + r̃2)

d(x̃2 + r̃2)
− a1

˜̄u1(x̃2 + r̃2)

= [a1x̃2 + a5]
d˜̄u1(x̃2)

dx̃2

− a1
˜̄u1(x̃2), (2.15a)

[a1(x̃2 + r̃2) + a3 + a5]
d˜̄u3(x̃2 + r̃2)

d(x̃2 + r̃2)
− a1

˜̄u3(x̃2 + r̃2)

= [a1x̃2 + a5]
d˜̄u3(x̃2)

dx̃2

− a1
˜̄u3(x̃2). (2.15b)

The corresponding similarity variables are obtained from the invariant surface
condition (e.g. see Bluman & Kumei 1989)

dr̃1

a1r̃1 + a2

=
dr̃2

a1r̃2 + a3

=
dr̃3

a1r̃3 + a4

=
dx̃2

a1x̃2 + a5

=
dR̃ij

2a1R̃ij

=
dp̃ui

3a1p̃ui

=
dũjp

3a1ũjp
=

dR̃(ik)j

3a1R̃(ik)j

=
dR̃i(jk)

3a1R̃i(jk)

, (2.16)

where the constants of integration are taken as the new variables. The equations for
the mean velocities (2.15a) and (2.15b) can only have a unique solution if

a3 = 0. (2.17)

Since each equation (2.15a) and (2.15b) depends on the left-hand side on x̃2 + r̃2

and on the right-hand side on x̃2, they can only be equal if they are both equal
to a constant. Hence, by comparing the first brackets on the left and right sides
respectively, equations (2.15a) and (2.15b) uniquely become

[a1x̃2 + a5]
d˜̄u1(x̃2)

dx̃2

− a1
˜̄u1(x̃2) = c1, (2.18a)

[a1x̃2 + a5]
d˜̄u3(x̃2)

dx̃2

− a1
˜̄u3(x̃2) = c3. (2.18b)

Each of the parameters a1–a5 has a distinct physical meaning. The parameter a1

corresponds to the scaling group; i.e. equation (2.14) admits a transformation of the
form

x̃∗
2 = ea1 x̃2, r̃∗

i = ea1 r̃i , ˜̄u∗
i = ea1 ˜̄ui, (2.19a)

R̃∗
ij = e2a1R̃ij , p̃ui

∗
= e3a1 p̃ui, ũip

∗
= e3a1 ũip, (2.19b)

R̃∗
(ik)j = e3a1R̃(ik)j , R̃∗

i(jk) = e3a1R̃i(jk), (2.19c)
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which does not alter the functional form of the equation written in the new
coordinates. The parameters a2–a5 correspond to the translation groups which
conform to the fact that (2.14) is autonomous with respect to x̃2 and r̃i . As a
result (2.14) is invariant under transformations such as

x̃∗
2 = x̃2 + a5. (2.20)

However, for physical reasons the translation invariance of r̃i is not meaningful,
and a2–a4 must be zero. In order to understand the problem with these ‘artificial’
invariances, one has to call to mind that the translation invariance with respect to r̃i

gives rise to a new solution where the correlation function is shifted in correlation
space. Since Rij reaches its finite maximum at |r̃ | = 0 and tends to zero for |r̃ | → ±∞,
a shift in the correlation space cannot be a new solution.

Depending on the value of a1, two fundamentally different cases are to be
distinguished for which a similarity reduction may be obtained.

2.3.1. a1 �= 0

This case corresponds to the fact that scaling with respect to space is not inhibited
and (2.18a) and (2.18b) integrate to

˜̄u1 = C1 (x̄2 + a5/a1) − c1/a1, (2.21a)

˜̄u3 = C3 (x̄2 + a5/a1) − c3/a1, (2.21b)

where C1 and C3 are integration constants. If the transformation (2.13a) to the original
coordinates is inferred, equations (2.21) become

ū1 = C1 Ω x2 + Ω γ (Ω)(C1a5/a1 − c1/a1), (2.22a)

ū3 = C3 Ω x2 + Ω γ (Ω)(C3a5/a1 − c3/a1). (2.22b)

It appears that the additive constants may depend on the rotation rate in an unknown
manner. In order to resolve this problem, it is helpful to investigate the two-point
correlation function.

Though a solid theoretical basis on first principles is still lacking, it appears from the
present DNS computations that to leading order the two-point correlation function
does not scale with the rotation rate Ω . This is an empirical observation from DNS
data, that Rij is only very weakly influenced. Hence it can be concluded from equation
(2.13b) that, in order to have no Ω dependence of Rij , the function γ behaves as
γ ∼ 1/Ω . As a result, the two additive constants appearing in the scaling laws (2.22a)
and (2.22b) do not depend on Ω either. Only the slope of the linear scaling laws
depends on the rotation rate.

The similarity variables for the case a1 �= 0 corresponding to the mean velocities
(2.21a) and (2.21b) are obtained from the characteristic equations (2.16). Employing
a2 = a3 = a4 = 0, the integration yields

η1 =
r̃1

x̃2 + a5/a1

, η2 =
r̃2

x̃2 + a5/a1

, η3 =
r̃3

x̃2 + a5/a1

, (2.23a)

R̃ij = Fij (x̃2 + a5/a1)
2, p̃ui = Gi(x̃2 + a5/a1)

3, ũjp = Hj (x̃2 + a5/a1)
3, (2.23b)

R̃(ik)j = F(ik)j (x̃2 + a5/a1)
3, R̃i(jk) = Fi(jk)(x̃2 + a5/a1)

3, (2.23c)

where the integration constants ηi , Fij , Gi , Hi , F(ik)j , and Fi(jk) are the new similarity
variables. In order to verify the similarity reduction of equation (2.14), the quantities
Fij , Gi , Hi , F(ik)j , and Fi(jk) are introduced as new dependent variables only depending
on ηi .
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In order to obtain a new identity in similarity space, the latter scaling is substituted
into equation (2.6) for Rij . For this purpose the origin of x̃2 may be chosen as

x̃ ′
2 = x̃2 +

a5

a1

(2.24)

such that the similarity variable simplifies to

ηi =
r̃i

x̃ ′
2

. (2.25)

Introducing the transformations (2.23a)–(2.23c) into equation (2.6), we obtain the
relation Fij (x̃

′
2, x̃

′
2η)(x̃ ′

2)
2 = Fji(x̃

′
2(1+η2), −x̃ ′

2η) (x̃ ′
2)

2. Since it was previously assumed
that all two-point correlation functions are solely functions of η, only the ratio of the
first and the second parameter can appear in Fij . Thus, we finally obtain

Fij (η) = Fji

(
−η

1 + η2

)
. (2.26)

This relation gives valuable insight into the structure of the solution and it connects
different r̃ domains to each other.

Interestingly, relation (2.26) gives raise to a new symmetry transformation

η̃i =
−ηi

1 + η2

(2.27)

which is neither a reflection symmetry in the classical sense nor a continuous
transformation (Lie group) since it does not contain a continuous parameter. Its
validity can be verified by substituting (2.27) into (2.14) after the similarity coordinate
(2.25) and the linear profiles (2.21a) and (2.21b) have been employed.

Another interesting feature of (2.26) is that it can be considered as an algebraic
functional equation for the trace element of Fij or Rij in the following, denoted as F[ii]

with i = 1, 2, 3. The ‘equilibrium’ plane for (2.26) is η2 = −2 with arbitrary η1 and η3

where both the argument and the value of Fij are the same. In addition η = 0 is an
‘equilibrium’ point. Apart from these two regions, equation (2.26) defines a mapping
between different η-domains. There are two pairs of η2-regions which map into each
other, namely

η2 : (−∞, −2) ↔ (−2, −1) and (−1, 0) ↔ (0, ∞). (2.28)

This nomenclature refers to the fact that, once the functional values for F[ii] in the
η2 region (−2, −1) are known, the corresponding values in the region (−∞, −2) are
uniquely determined and vice versa. After a value for η2 is chosen, the values for η1

and η3 map according to

−η1

1 + η2

→ η1 and
−η3

1 + η2

→ η3 (2.29)

A graphical mapping scheme is given in figure 2. For clarity only the η1, η2 domain
is depicted where connected mapping regions are indicated by arrows. The extension
to the entire η-domain is straightforward.

Besides the above symmetry relation for F[ii] with i = 1, 2, 3, equation (2.26)
provides solutions for any off-diagonal Fij element with (i �= j ) if Fji is known. Of
course, similar features can be found for the pressure–velocity correlation and for the
triple correlation.
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Figure 2. Non-locally related correlations in the (η1, η2)-plane according to (2.26).

For the present case a1 �= 0, the statistical variables scale with the wall distance.
This is not the case in the following subsection.

2.3.2. a1 = 0

This case corresponds to the scaling with respect to space being broken as can
also be read from (2.19a)–(2.19c). As a result equation (2.18a) and (2.18b) may be
integrated to

˜̄u1 =
c1

a5

x̃2 + C3, ˜̄u3 =
c3

a5

x̃2 + C4, (2.30a, b)

where C3 and C4 are integration constants. The characteristic equation (2.16) cannot
be integrated in the usual way. However, a reduction may still be possible since the
correlation equation is autonomous with respect to x2. Due to the linear profile all
statistical functions in equation (2.14) may not depend on the spatial coordinate x̃2.
Obviously, the present case corresponds to a homogeneous shear flow. Even though
this does not appear to be a reduction in the usual sense from a group theoretical
point of view, this is similar to the case a1 �= 0. In § 2.3.1 a reduction was attained by
the scaling group (a1) while in the present case the reduction may be attained by the
translation group (a5). In both cases the dimensionality of the problem is reduced.

It should be noted that for physical reasons the case a1 �= 0 appears to be more
likely to be applicable to the rotating channel flow for the following reason. One of the
key observations in Oberlack (2001) was that turbulence has a tendency to establish
a maximum degree of symmetry transformation. For the different channel flow cases,
the highest degree of symmetry has been observed where the least wall influence is
present, namely in the core region of the channel. Hence it may be expected that the
same maximum principle applies for the present flow.

It is very important to note that the present analyses, in particular in § § 2.3.1 and
2.3.2, are not limited to the two-point correlation equation. The results regarding
all the symmetries and scaling laws hold for all multi-point correlation equations
to arbitrary order. Hence the closure problem of turbulence which usually precludes
exact results is not an obstacle for the present analysis.

More mathematical details on group methods and how to obtain the above results
can be found in appendix B of Oberlack (2001).

To conclude from the analysis, it is to be expected that a cone-shaped mean velocity
in the streamwise direction will appear such that the two flanks of the cone are linear.
Furthermore, linear profiles for the cross-flow will also be established on both sides
of the centreline.
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Figure 3. Streamwise mean velocity at Ro = 0 ( ), Ro = 2.5 ( · ),
Ro = 6.5 ( ), and Ro = 10 (· · · · · ·).

3. Direct numerical simulation of the flow
The numerical technique used is a standard spectral method with Fourier decom-

position in the streamwise and spanwise directions and a Chebyshev decomposition in
the wall-normal direction. The original version of the numerical code was developed at
KTH/Stockholm by Lundbladh, Henningson & Johanson (1992). Additional features
such as the streamwise rotation and statistics were added during the project. All flow
quantities are non-dimensionalized by h/2 and uτ where h is the channel width and
uτ is the friction velocity of the fully developed turbulent flow field. The boundary
conditions are non-slip at x2 = ±1 and periodic in the x1- and x3-directions. For all
computations the pressure gradient is kept constant. Further details on the numerical
scheme may be obtained from Lundbladh et al. (1992).

After the simulations were finalized all flow quantities were normalized on the
friction velocity uτ . The definition of the Reynolds number and its numerical value
for all subsequent calculations below are

Reτ =
huτ

2ν
= 180. (3.1)

The rotation number is defined as

Ro =
Ωh

uτ

. (3.2)

Four computations at rotation numbers Ro = 0, 2.5, 6.5 and 10 have been
conducted. All results presented for Ro =0 are in good agreement with the data from
Kim, Moin & Moser (1987). The domain sizes used in the x1, x2, and x3-directions
are 4π, 2, and 2π on 128 × 129 × 128 grids, respectively, for the Ro = 0, 2.5 and 6.5
cases, and 8π, 2, and 4π on a 256 × 129 × 128 grid for the Ro = 10 case. In figure 3
the streamwise mean velocity profiles at Ro = 0, 2.5, 6.5, and 10 are compared. As
expected from the global time-scale analysis, the near-wall region up to x2 = ±0.9
is only marginally perturbed. Approaching the core region of the flow, a significant
change in the mean velocity profile is visible with a very pronounced shoulder at
x2 = ±0.8 for Ro = 10. In addition, a much flatter centre region is noticeable. It is
interesting to note that a decrease of mass flow is induced by the rotation.
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Figure 4. Streamwise mean velocity at Ro = 10 in the core region.
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Figure 5. Spanwise mean velocity at Ro = 2.5 ( ), Ro = 6.5 ( · ),
and Ro = 10 ( ).

As predicted by the group analysis, two linear regions appear to emerge on each
side of the centreline for the high rotation rate. A more detailed perspective of the
linear region is given in figure 4 where only the ‘head’ of the profile for Ro = 10 is
depicted. The linear regions roughly cover the wide range x2 = 0.2–0.6 on both sides
of the centreline.

As already mentioned in § 2, a mean cross-flow denoted by ū3 is induced by the
rotation. In § 2.2 it was predicted that the flow is skew-symmetric about the centerline
as shown in figure 5.

Though a clearer verification is still lacking, it appears that the predicted linear
profile is also visible in the induced cross-flow. The location of the linear region is
slightly shifted towards the wall region compared to the linear region of the streamwise
velocity. One of the most interesting features of the cross flow is the region near the
centreline. There the cross-flow has opposite sign compared to the flow regions closer
to the channel walls. The source of this effect is not fully understood yet, though it
appears unlikely that it is a large-scale property of the flow since no such flow pattern
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Figure 6. Shear stresses at Ro = 10: u1u2 ( ), u2u3 ( ), u1u3 ( · ).

was seen in the flow visualization. Note that for low rotation rates the mean spanwise
velocity profiles increase, but appear to decrease for higher rotation rates.

From the statistical one-point quantities, only the Reynolds stress tensor has been
computed. In figure 6 the Reynolds shear stresses at Ro = 10 are displayed. Both the
linear and the constant curves for u1u2 and u2u3 respectively can be derived from
equations (2.1a) and (2.1c) by neglecting the viscous terms, which are only significant
in the near-wall region. One of the most intriguing features of the shear stresses is
the induced u1u3 component. The two other cross-stresses can both be interpreted in
terms of a simplified eddy-viscosity model, proportional to their corresponding mean
velocities. However, this cannot be done for the u1u3 shear stress. Hence u1u3 can
only be modelled with the aid of more elaborate turbulence models such as LES or
Reynolds stress transport models, to be presented in the next subsection.

In a corresponding DNS at Ro = 0, only the Reynolds shear stress u1u2 is non-zero.
This curve is not shown in figure 6 since both u1u2 stress curves are very close to each
other and only differ slightly in the near-wall region where viscosity is dominating
the flow. All statistical curves exhibit the reflection symmetry properties about the
centreline found in § 2.2.

The normal stresses for both the rotating and the non-rotating case are depicted
in figure 7. Only very weak differences are noticeable compared to the strong change
in the streamwise mean velocity induced by the rotation. Though the shape and
magnitude of each set of curves for Ro = 0 and Ro = 10 are very similar, there are
some distinct qualitative differences in the core region of the flow. We recall that the
largest changes should be visible towards this core region as to be expected from the
time-scale analysis.

A general problem with rotating flows is the fact that in order to obtain good
statistics the required integration time of the computation is significantly longer than
for the corresponding non-rotating case. Computations Ro =2.5, 6.5 and 10 were run
for 550(h/2)/uτ time units and the statistics collected for the last 225 time units. The
classical case, i.e. no rotation, was run for 330(h/2)/uτ time units and the statistics
collected for the last 165 time units.

Also, it is observed in the rotating pipe flow computation by Orlandi & Fatica
(1997) that very long coherent structures appear in the streamwise direction. This
requires a very large computational box in order to ensure a sufficient decay to
zero for the two-point correlation functions. For the present computation it was also
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Figure 7. Normal stresses at Ro = 0 on the left and Ro = 10 on the right: u1u1 ( ),
u2u2 ( ), u3u3 ( · ).
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Figure 8. Two-point correlations in the streamwise direction at mid-plane (x2 = 0) for
Ro = 10: R11 ( ), R22 ( ), R33 ( · ).

noticed that the box in the streamwise direction needs to be larger than for the
non-rotating channel flow. In figure 8 the two-point correlations in the streamwise
direction for all normal stresses are shown at mid-plane (x2 = 0). Here all curves fall
to zero, confirming that the chosen computional box is large enough.

4. Model computations
System rotation is not a singular influence on the flow, but belongs to a wider class

of benchmarks which mimics mean streamline curvature. This is very important for
almost any application. Since system rotation is a challenging measure for turbulence
models, we have investigated the response of two classes of turbulence models to
the influence of streamwise rotation on the turbulent channel flow. First, LES of
turbulence has been investigated. Thereafter, a second-moment closure has been
employed to test its ability to model the flow. Classical two-equation models such as
the k–ε or the k–ω model have not been examined since they exhibit no sensitivity
to system rotation. This deficiency can be directly deduced from the model equations
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Figure 9. Streamwise mean velocity from DNS on the left and LES on the right at Ro = 10.

since no Coriolis type of term appears in the transport equation for the statistical
quantities.

4.1. Large-eddy simulations

The first turbulence model to be investigated here is the dynamic subgrid-scale model
of Germano et al. (1991) and Lilly (1992) used in LES. Since the dynamic model
is ‘two-dimensional material-frame indifferent’ (see Speziale 1981; Oberlack 1997),
one may expect that at least in the limit of large rotation numbers the model should
capture the trends observed in the DNS. It will be seen subsequently that the dynamic
model captures very well most of the trends in the flow, even quantitatively, except
for the linear regions in the streamwise mean velocity. The flow parameters and the
numerical scheme are the same.

The domain sizes used in the x1-, x2-, and x3-directions are 4π, 2, and 4π/3 on
48×32×32 grids, respectively, for the Ro = 0 case, and 8π, 2, and 2π on a 96×33×48
grid for the Ro = 10 case.

In figure 9 the streamwise mean velocities from DNS and LES are compared. Even
though the LES profile changes significantly due to the system rotation, it does not
exhibit the clear linear region observed in the DNS. In addition, the mass flux is
much higher than in the DNS.

In figure 10 the shear stresses from the DNS are very well represented by the
LES calculation. Even quantitatively there is close agreement with the DNS. The
normal stresses in figure 11 exhibit less good agreement with the DNS, but a correct
qualitative agreement is clearly visible. In particular, the near-wall peak of u1u1 is too
high compared to the DNS.

4.2. Reynolds-averaged modelling

To this end the SSG second-moment closure (SMC) model (see Speziale, Sarkar
& Gatski 1991) has been used in conjunction with the elliptic-relaxation approach
(Durbin 1991, 1993) to model near-wall effects. The details of the model are given
in Pettersson, Andersson & Brunvoll (1998). There exist a fairly large number of
different second-moment closure schemes in the literature, but the one chosen here
suffices to demonstrate some of the outstanding single-point modelling challenges.
We have observed essentially the same behaviour using the simpler IP model (see
Launder, Reece & Rodi 1975) and the more elaborate RLA model (see Ristorcelli,
Lumley & Abid 1995).
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Figure 10. Shear stresses from the DNS on the left and LES on the right at Ro = 10:
u1u2 ( ), u2u3 ( ), u1u3 ( · ).
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Figure 11. Normal stresses from the DNS on the left and LES on the right at Ro = 10:
u1u1 ( ), u2u2 ( ), u3u3 ( · ).

A salient feature of rotating channel flow, from a modelling perspective, is that
the imposed Coriolis force only indirectly affects the mean flow field. It is the
turbulent stresses that are primarily affected. The response of SMC models to an
imposed rotation is rather different in a streamwise rotating channel than in the more
traditional channel with spanwise rotation. One distinct difference is that the response
of the imposed rotation is symmetric in the former case. Except for a simple reflection
the sign of Ωk is of no importance. In a spanwise rotating channel, on the other hand,
the response depends on whether the imposed rotation is cyclonic or anticyclonic, i.e.
if the rotation vector is parallel or antiparallel to the mean vorticity.

The predicted distribution of the mean velocity components across the channel is
shown in figures 12 and 13. Since the pressure gradient was kept constant during these
computations, the bulk velocity was allowed to vary with rotation number. As can be
seen in figure 12, the RANS model overpredicts the effect of rotational stabilization
since the bulk velocity is overpredicted compared to the reference data (DNS and
LES). The secondary mean flow component in figure 13 exhibits a somewhat different
distribution than the reference data. It was observed during the course of this study
that the particular distribution of ū3 strongly depends on the adopted pressure–strain
model.
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Figure 12. Streamwise velocity from the RANS model at Ro = 10.
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Figure 13. Spanwise velocity from the RANS model at Ro = 10.

The normal Reynolds-stress components at Ro = 10 are displayed in figure 14 and
the results compare reasonably well with both the DNS and LES results. The off-
diagonal components u1u2 and u2u3 of the Reynolds-stress tensor shown in figure 15
are in close agreement with the reference data. The predicted secondary shear stress
u1u3 is in significant error; even the sign is wrong compared to the LES and DNS
results. Although this component is ‘secondary’ in that it does not affect the mean
velocity field directly, it plays a significant role in the dynamics of the Reynolds-stress
components.

In order to elucidate this problem, let us first consider the exact equation governing
the transport of the kinematic Reynolds stress tensor uiuj in a non-inertial frame of
reference, which can be written as

∂uiuj

∂t
+ uk

∂uiuj

∂xk

= −
(

uiuk

∂uj

∂xk

+ ujuk

∂ui

∂xk

)
︸ ︷︷ ︸

Pij

−2Ωm(emkiujuk + emkjuiuk)︸ ︷︷ ︸
Rij

+ν
∂2uiuj

∂xk∂xk

− ε

k
uiuj + ℘ij − ∂Cijk

∂xk

(4.1)
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Figure 14. Normal stresses from the SSG model at Ro = 10: u1u1 ( ), u2u2 ( ),
u3u3 ( ).
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Figure 15. Shear stresses from the SSG model at Ro = 10: u1u2 ( ), u2u3 ( ),
u1u3 ( ).

for an incompressible fluid, where

℘ij = −p

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
︸ ︷︷ ︸

φij

−εij +
ε

k
uiuj (4.2)

is a trace-less redistribution tensor, and

Cijk = uiujuk +
δki

ρ
ujp +

δkj

ρ
uip, (4.3)

represents turbulent and pressure diffusion. The rate of viscous dissipation is given
by

εij = ν
∂ui

∂xk

∂uj

∂xk

and φij is the conventional pressure–strain correlation tensor. Here, Ωk denotes a
constant angular velocity of the reference frame about the xk-axis. The first two terms
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on the right-hand side of (4.1) represent the rate of production due to mean velocity
gradient (Pij ) and the imposed frame rotation (Rij ). The only unclosed terms in (4.1)
are ℘ij and Cijk .

An important distinction between an imposed streamwise rotation and an imposed
spanwise rotation is that all components of the Reynolds stress tensor are non-zero.
In the above case u1u2 is the only non-zero off-diagonal component of the Reynolds
stress tensor. It is particularly challenging in the present case since the primary shear
stress, which is ultimately responsible for changes of the streamwise mean velocity
field, is directly affected by the imposed rotation only through one of the secondary
shear stress components, i.e.

R12 = 2Ω1u1u3 (4.4)

(there are of course indirect effects of rotation through the other components of
the Reynolds stress tensor). The situation is made even more subtle by recalling
that it is the imposed rotation Ω1 that alone is responsible for a non-zero value
of u1u3. It should also be recalled from (4.1) that the imposed rotation enters the
set of governing equations implicitly through the fluctuating pressure which is part
of the pressure–strain correlation tensor. Modelling of the pressure–strain term is
therefore of crucial importance. The SSG model constitutes the most general linear
pressure–strain model and it comprises all major building blocks of state-of-the-art
RANS closures.

Stabilization of turbulence due to the imposed rotation in the model computations
is essentially determined by the sum

R12 + (φ12)Ω =

(
1 − C2

2

)
R12 (4.5)

if the simpler IP model (Launder et al. 1975) is used for convenience. Here, (φ12)Ω
denotes the rotational part of the pressure–strain term. The model thus indicates
that the exact term R12 is responsible for the suppression of u1u2 because u1u2

and u1u3 have opposite signs. The rapid pressure–strain term, on the other hand,
is counteracting that effect since C2 > 0. The DNS and LES data however show
the opposite, namely that it must be the pressure–strain correlation term φ12 that
is responsible for the stabilization of u1u2 (because both u1u2 and u1u3 have the
same sign). The apparent success of the SMC models to predict the observed
reduction of u1u2 due the imposed streamwise rotation, although the rotational
effect is overpredicted, is therefore not a result of a good pressure–strain model,
but rather of another striking failure: the incorrect sign of secondary shear stress
component u1u3. This is sometimes referred to as the ‘u1u3-anomaly’ (e.g. see Jakirlic,
Hanjalic & Tropea 2000).

5. Summary and conclusions
The general purpose of the present work is to establish a new but still very simple

canonical test case to study basic turbulence physics. It has been confirmed by DNS
that there are linear regions in both the streamwise and the spanwise mean velocity as
was suggested by Lie group analysis of the two-point correlation equations. Additional
scaling properties of the two-point correlation functions have been established.

Beside the mean flow, all Reynolds-stress quantities have been computed. In contrast
to the classical rotating channel flow, all six Reynolds stress components are non-zero.
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The stress components from the DNS have the expected symmetry properties about
the centreline as predicted by the symmetry analysis.

The flow is very challenging for turbulence models since common two-equation
models cannot account for the rotation effects. Both LES with the dynamic subgrid-
scale model and second-moment models have been tested for the present flow
geometry. The LES captures most of the DNS results very well. Only the linear regions
in the streamwise velocity were not visible. A second-moment model captured some
basic trends of the flow. However, several serious drawbacks have been encountered,
and it is rather disturbing that the apparent success of the RANS model is not founded
on a physically appealing closure formulation. The most serious issue is related to the
secondary shear-stress component u1u3 which is predicted with the wrong sign. This
erroneous behaviour has been traced to the important pressure–strain correlation
model.
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Speziale, C. G. 1981 Some interesting properties of two-dimensional turbulence. Phys. Fluids 28,
1425–1427.

Speziale, C. G., Sarkar, S. & Gatski, T. 1991 Modelling the pressure–strain correlation of
turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272.

Stephani, H. 1989 Differential Equations: Their Solution Using Symmetries (ed. M. MacCallum).
Cambridge University Press.




